

Page 1 of 7

API Standards Version &

Lifecycle Management Policy

Version: 1.0

Published date: 11 April 2019

Author: Matthew Bell, Payments NZ

Approved by: Payments NZ Board

Approval date: 11 April 2019

Contents

Page Subject

2 Background & Purpose

3 Standards Version Management

6 Lifecycle Management

Page 2 of 7

Purpose

This policy will outline how the API Service will manage the versioning and lifecycle

management of supported API standards. This has been agreed by the API working groups

and approved by the API Council for reference when assessing the current status of

supported standards.

Standards Versioning

Standards versioning refers to the change management system used to categorise and

record the different versions of an API standard over time. The standards versioning system

provides a framework for how an API’s major, minor and patch changes are managed and

published. For example versions will be displayed as per the following:

 Major 3.0.0

 Minor 2.4.0

 Patch 2.4.1

Lifecycle Management

How the stages of an API standard’s lifecycle are defined and managed, ranging from its

conceptual inception at a planning stage, through to the expiration of the standard. Lifecycle

management includes key consultation stages, any required timeframes, and the notification

requirements as a standard moves through the lifecycle.

This is managed using the following eight stages:

 Standards development pipeline plan

 Requirements

 Standards Development

 Release candidate

 Approval

 Version Release

 Depreciation

 Expiry

Page 3 of 7

Standards Version Management

The standards versioning approach for the API Service has been defined in the below table, along with a description of high level roles and

processes.

Description of semantic versions Semantic version Roles and process

MAJOR version is when you either make

backwards-incompatible API changes, or

introduce significant new feature(s).

A backwards incompatible change might

result in Third Party applications failing

(unless upgraded via a systems change

process). For example, making deletions,

changing mandatory fields, or any change

that impacts the overall interpretation of

the standard.

A significant new feature might introduce a

new business function, for example

introducing new customer account

information data types. Generally, this will

be a planned and prioritised initiative

developed through the standards lifecycle

process. These would be a subjective

decision for whether or not the new

features constitute a major change.

Semantic version control is x.0.0. For

example, 1.0.0, or 2.0.0

A major version:

 MUST be incremented if any
backwards incompatible changes are
introduced to the public API.

 It MAY be incremented if a significant
new feature is introduced to the API
standard.

 It MAY include minor and patch level
changes.

 Patch and minor version MUST be
reset to 0 when major version is
incremented, e.g. 1.3.14 2.0.0.

As an indicative guide only, a major

version change to a standard might

occur annually.

As an indicative guide, it is expected that

an ‘n minus 2’ approach be taken, being

the latest major version and the last two

Major versions:

 MUST be approved by the API
Council.

 The API Council MUST assess
impacts, scope and risks of changes.

 MUST follow the full standards
lifecycle process end-to-end,
including: planning and prioritisation,
appropriately consulting API
Standards Users, notifications to
Standards Users with respect to the
new major version, its depreciation
date, and its expiry (refer standards
lifecycle management section for
more information).

Note that major versions are depreciated

and terminated, over time, as per the

standards lifecycle management

process. Expired major standards

include all minor and patch versions

attached to it.

Page 4 of 7

Description of semantic versions Semantic version Roles and process

 older versions also remain available,

with at least the oldest version being

depreciated for expiry. For example

when version 3.0.0 is released, version

1.0.0 should be depreciated and moved

towards expiry.

MINOR: version is when you add

functionality in a backwards-compatible

manner, e.g. making changes to the

standards, such as additions, that do not

have any risk of making Third Party

applications fail.

A Minor version might also introduce new

significant new feature.

Semantic version control is 0.x.0. For

example, 1.2.0, or 1.3.0

A minor version:

 MUST be incremented if new,
backwards compatible functionality is
introduced to the API standard.

 It MUST be incremented if any API
functionality is marked as deprecated.

 It MAY be incremented if substantial
new functionality or improvements are
introduced.

 It MAY include patch level changes.

 Patch version MUST be reset to 0
when minor version is incremented,
e.g. 1.3.7 1.4.0

As an indicative guide only, a minor

version change to a standard might

occur every 3 to 6 months.

Minor versions

 MAY be approved by the API Council
(to be discussed with the Council).

 MAY be approved by management of
the API Service.

 The API Council MAY assess
impacts, scope and risks of changes.

 MAY originate via the planning stage
of the standards lifecycle
management process, or MAY be a
result of a new issue, opportunity, or
a change request being received from
a Standards User.

 The API Service MAY publish one or
more minor releases at any time.

Note that minor versions are not

depreciated or expired (deprecation is

applied to major versions only, and by

extension all minor and patch versions

within that major version).

Page 5 of 7

Description of semantic versions Semantic version Roles and process

PATCH: version when backwards-

compatible bug fixes are made, e.g.

corrections of minor technical errors.

Semantic version control is 0.0.x. For

example, 1.0.1, or 1.0.2.

A patch version:

 MUST be incremented if only
backwards compatible bug fixes are
introduced. A bug fix is defined as an
internal change that fixes incorrect
behaviour.

As an indicative guide only, a patch

version change to a standard might

occur at any time, such as monthly.

Patch versions:

 MUST be approved by management
of the API Service.

 MAY originate via a Standards User
or API Community Member change
request.

 MAY originate via a recommendation
from the Technical Standards Group,
or any other group within the API
Service.

Release candidate: Pre-release versions

of any potential forthcoming patch, minor

or major release. To enable the API

Service to publish draft updates for

Standards Users review and provide

feedback. A release candidate could be a

work-in-progress draft that is under

development, a draft for consultation, or a

final draft pending approval.

Semantic version control is 1.0.0-rc1, or

1.0.0-rc2.

A release candidate:

 Should NOT be relied on as
confirmation of functionality in the
next release.

A release candidate indicates that the

version might be unstable and might not

satisfy the intended compatibility

requirements as denoted by its

associated normal version.

A release candidate could be:

 a work-in-progress draft that is under
development,

 a draft for consultation, or

 a final draft pending approval.

Page 6 of 7

Lifecycle Management

The below table details how the stages of an API standard’s lifecycle are defined and managed. Ranging from its conceptual inception at a

planning stage, through to the expiration of the standard. Lifecycle management includes key consultation stages, any required timeframes and

the notification requirements as a standard moves through the lifecycle.

The following lifecycle generally applies to Major version releases, e.g. 2.0.0. The lifecycle could also apply to Minor version releases if

deemed appropriate, e.g. 2.1.0, but the level of effort/involvement would be right-sized in proportion to the smaller scaled nature of the Minor

change.

Lifecycle Stage Summary Description Process & Responsibility

Standards

Development

Pipeline Plan

A high level plan setting out standards development

goals, strategy and priorities for upcoming standards

development work. Includes expected standards

deprecation plans. Consultation with Standards Users

required.

Via consultation process and through applicable

standards governance groups. Agreed by the API

Council. Approved by the Payments NZ Board.

Requirements Business description of the outcomes and functionality

that new standards versions are to deliver.

Via the API Service’s team and applicable groups.

Agreed by the API Council.

Standards

Development

Develop draft API standards that deliver against the

Requirement’s.

By the API technical group.

Release

candidate

Draft API standard socialised for wider consultation and

review process prior to its approval. Consultation with

Standards Users required.

Option for API Standards Users, the API technical group,

and potentially API Community Members to provide

feedback prior to approval of the standard.

Page 7 of 7

Approval Approval of the standards version. By the API Council.

Version Release Publication of the approved standard. Includes adding

the standard into the industry sandbox, and notifications

to Standards Users.

By the API Service team, in line with the approval.

Deprecation Approval that a given standard version will expire and no

longer be valid for use in the market from a specific future

date. Includes a requirement to notify Standards Users.

Unless the standard has its security compromised, a

notice period of at least 6 months must be given before its

expiry.

Approval by the API Council. Notification by the API

Service team.

Expiry A date when a version of a standard is no longer valid or

supported. Standards Users have an obligation to no

longer use the standard after it has expired. Includes a

requirement to notify Standards Users.

By the API Service team, as per approved depreciation

date. Includes notification.

